âDetection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopyâ, N.Hayazawa, T. Yano, H. Watanabe, Y. Inoue, and S.Kawata, Chem. Phys. Lett. 376, 174 (2003).
âNanoscale chemical analysis by tip-enhanced Raman spectroscopyâ, R. M. Stokle, Y. D. Suh, V. Deckert, and R. Zenobi, Chem. Phys. Lett. 318, 131 (2000).
âSurfaced-enhanced and STM tip-enhanced Raman spectroscopy of CNA ion at gold surfacesâ, B. Pettinger, G. Picardi, R. Schuster, and G. Ertl, J. Electroanal. Chem. 554, 293 (2003).
âExcitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tipâ, N.A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, Optics Communications 253, 118 (2005).
âHigh-Resolution Near-Field Raman Microscopy of Single-Walled Carbon Nanotubesâ, A. Hartschuh, E. J. Sanchez. X. S. Xie, and L. Novotony, Phys. Rev. Lett. 90, 095503 (2003).
âNear-field Raman scattering investigation of tip effects on C 60 moleculesâ, P. Verma, K. Yamada, H. Watanabe, Y. Inoue, and S. Kawata, Phys. Rev. B. 73, 045416 (2006).
âSide-illuminated tip-enhanced Raman study of edge phonon in graphene at the electrical breakdown limitâ, Y. Okuno, S. Vantasin, I. S. Yang, J. Son, J. Hong, Y. Y. Tanaka, Y. Nakata, Y. Ozaki and N. Naka, Appl. Phys. Lett. 108, 163110 (2016).
âEnhancement of Raman signals with silver-coated tips. Applied spectroscopyâ, B. S. Yeo, W. Zhang, C. Vannier and R. Zenobi, Appl. Spectrosc. 60(10), 1142-1147 (2006).
âHighly reproducible tipâenhanced Raman scattering using an oxidized and metallized silicon cantilever tip as a tool for everyoneâ, N. Hayazawa, T. Yano and S.Kawata, Journal of Raman Spectroscopy 43(9), 1177- 1182 (2012).
âThe controlled fabrication of âTip-On-Tipâ TERS probesâ, Y. Yang, Z. Y. Li, M. Nogami, M. Tanemura and Z. Huang, RSC Advances 4(9), 4718-4722 (2014).
âRational fabrication of a gold-coated AFM TERS tip by pulsed electrodepositionâ, L. K. Yang, T. X. Huang, Z. C. Zeng, M. H. Li, X. Wang, F. Z. Yang and B. Ren, Nanoscale 7(43), 18225-18231 (2015).
âFacile Fabrication of Spherical NanoparticleâTipped AFM Probes for Plasmonic Applicationsâ, A. Sanders, L. Zhang, R. W. Bowman, L. O. Herrmann and J. J. Baumberg, Particle & Particle Systems Characterization 32(2), 182-187 (2015).
âNano-Raman spectroscopy with metallized atomic force microscopy tips on strained silicon structuresâ, L. Zhu, C. Georgi, M. Hecker, J. Rinderknecht, A. Mai, Y. Ritz and E. Zschech, J. Appl. Phys. 101(10), 104305 (2007).
âOptical antennas for tunable enhancement in tip-enhanced Raman spectroscopy imagingâ, I. Maouli, A. Taguchi, Y. Saito, S. Kawata and P. Verma, Applied Physics Express 8(3), 032401 (2015).
âTuning Localized Surface Plasmon Resonance in Scanning Near-Field Optical Microscopy Probesâ, T. L. Vasconcelos, B. S. Archanjo, B. Fragneaud, B. S. Oliveira, J. Riikonen, C. Li, D. S. Ribeiro, C. Rabelo, A. Jorio, C. A. Achete and L. G. Cancado, ACS Nano 9(6), 6297-6304 (2015).
âFabrication of near-field plasmonic tip by photoreduction for strong enhancement in tip-enhanced Raman spectroscopyâ, T. Umakoshi, T. Yano, Y. Saitoa and P. Verma, Applied Physics Express 5(5), 052001 (2012).
âOptical antennas with multiple plasmonic nanoparticles for tip-enhanced Raman microscopyâ, A. Taguchi, J. Yu, P. Verma and S. Kawata, Nanoscale 7(41), 17424- 17433 (2015).
âArrays of metallic nanocones fabricated by UV-nanoimprint lithography. Microelectronic Engineeringâ, J. M. Kontio, J. Simonen, J. Tommila and M. Pessa, 11th SEMATECH Surface Preparation and Cleaning Conference 87(9), 1711-1715 (2010).
âLarge-scale plasmonic nanocones array for spectroscopy detectionâ, G. Das, E. Battista, G. Manzo, F. Causa, P. A. Netti and E. D. Fabrizio, ACS Applied Materials & Interfaces 7(42), 23597-23604 (2015).
âGold nanocone near-field scanning optical microscopy probesâ, M. Fleischer, A. Weber-Bargioni, M. V. P. Altoe, A. M. Schwartzberg, P. J. Schuck, S. Cabrini and D. P. Kern, ACS Nano 5(4), 2570-2579 (2011).
âFabrication of a plasmonic nanocone on top of an AFM cantileverâ, O. Tanirah, D. P. Kern and M. Fleischer, Microelectronic Engineering 141, 215-218 (2015).
âPreparation of gold tips suitable for tip-enhanced Raman spectroscopy and light emission by electrochemical etchingâ, B. Ren, G. Picardi and B. Pettinger, Rev. Sci. Instruments. 75, 837-841 (2004).
â Tip-Enhanced Raman Spectroscopy: Near-Field Acting on a Few Moleculesâ, B. Pettinger, P. Schambach, C. J. Vollagomez and N. Scott, Annu. Rev. Phys. Chemm. 63, 379-399 (2012).
âAccurate measurement of enhancement factor in tipenhanced Raman spectroscopy through elimination of far-field artefactsâ, N. Kumar, A. Rae and D. Roy, Appl. Phys. Lett. 104, 123106 (2014).
âElectromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic systemâ, B. Richards and E. Wolf, Proc. Roy. Soc. A. 253, 358-379 (1959).
âFocusing of high numerical aperture cylindrical vector beamsâ, K. S. Youngworth and T. G. Brown, Optics Express 2, 22809 (2000).
âNonlinear Opticsâ, R. W. Terhune and P. D. Marker, A. K. Levine Ed, (Dekker, New York, 1968)
âStudy of optical effects due to an induced polarization third order in the electric field strengthâ, P. D. Maker and R. W. Terhune, Phys. Rev. 137, A801 (1965).
âEvolutions of polarization and nonlinearities in an isotropic nonlinear mediumâ, Z. Liu, X. Yan, W. Zhou and J. Tian, Opt. Express, 16, 8144 (2008).
âThree-dimensional vibrational imaging by coherent anti- Stokes scatteringâ, A. Zumbusch, G. R. Holtomi, X. S. Xie, Phys. Rev. Lett. 82(20), 4142 (1999).
âTip-Enhanced Coherent Anti-tokes Raman Scattering for Vibrational Nanoimagingâ, T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inoue and S. Kawata, Phys. Rev. Lett. 92(22), 220801 (2004).
âBillion-Fold Increase in Tip-Enhanced Raman Signalâ, H. K. Wickramasinghe, M. Chaigneau, R. Yasukuni, G. Picardi, and R. Ossikovski, ACS Nano 8(4), 3421â3426 (2014).
âNanoscale Chemical Imaging Using Tip-Enhanced Raman Spectroscopy: A Critical Reviewâ, T. Schmid, , L. Opilik, , C. Blum, and R. Zenobi, Angew. Chem. Int. Ed. 52, 5940â5954 (2013).
âEnhanced Raman Spectroscopy : Single Molecules or Carbon?â, K. F. Domke, D. Zhang, B. Pettinger, J. Phys. Chem. C. 111, 8611 â 8616 (2007).
âTip enhanced Raman spectroscopy evidence for amorphous carbon contamination on gold surfacesâ, M. Chaigneau, G. Picardi, R. Ossikovski, Surface Science 604, 701 (2010).
âTip-Enhanced Raman Imaging and Nanospectroscopy : Sensitivity, Symmetry, and Selection Rulesâ, C. C. Neacsu, S. Berweger, M. B. Raschke, Nanobiotechnology 3, 172-196(2007).
âNanoscale imaging and identification of a four-component carbon sampleâ E. Sheremet, R. D. Rodriguez, A. L. Agapov, A. P. Sokolov, M. Hietschold, D. R.T. Zahn, Carbon 96, 588-593 (2016).
âStudying the local character of Raman features of single-walled carbon nanotubes along a bundle using TERSâ Niculina Peica, Christian Thomsen, Janina Maultzsch, Nanoscale Research Letters 6, 174 (2011).
âChirality changes in carbon nanotubes studied with near-field Raman spectroscopyâ N. Anderson, A. Hartschuh, L. Novotny, Nano Lett. 7, 577-82 (2007).
âTip-enhanced nano-Raman analytical imaging of locally induced strain distribution in carbon nanotubesâ, Yano Taka-ki, T. Ichimura, S . Kuwahar, F. HâDhili, K. Uetsuki, Y. Okuno, P. Verma and S. Kawata, Nat Commun. 4, 2592 (2013).
âTip-Enhanced Raman Spectroscopy Study of Local Interactions at the Interface of StyreneâButadiene Rubber/ Multiwalled Carbon Nanotube Nanocompositesâ, T. Suzuki, X. Yan, Y. Kitahama, H. Sato, T. Itoh, T. Miura and Y. Ozaki, J. Phys. Chem. C 117(3),1436 (2013) .
âElectron and phonon renormalization near charged defects in carbon nanotubesâ, I. O. Maciel, N. Anderson, M. A. Pimenta, A. Hartschuh, H. Qian, M. Terrones, H.Terrones, J. Campos-Delgado, A. M. Rao, L. Novotony and A. Jorio, Nat. Mater. 7, 878â83 (2008).
âNovel methodology for estimating the enhancement factor for Tip-enhanced Raman spectroscopyâ D. Roy, J. Wang, C. Williams, J. Appl. Phys. 105, 013530 (2009).
âHigh-resolution Raman imaging of bundles of singlewalled carbon nanotubes by tip-enhanced Raman spectroscopyâNastaran Kazemi-Zanjani, Pierangelo Gobbo, Ziyan Zhu, Mark S. Workentin, Francois Lagugne-Labarthet, Revue canadienne de chimie 93(1), 51-59 (2015).
âA 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambientâ, C. Chen, N. Hayazawa, and S. Kawata, Nature Communications 5, 3312 (2014).
âHigh resolution probing of multi wall carbon nanotubes by tip enhanced Raman spectroscopy in gap-modeâ, G. Picardi, M. Chaigneau, R. Ossikovski, Chem. Phys. Lett. 469, 161 (2009).
âTip-Enhanced Raman Imaging and Nano Spectroscopy of Etched Silicon Nanowiresâ, Nastaran Kazemi-Zanjani , Erwan Kergrene , Lijia Liu , Tsun-Kong Sham and Francois Lagugne-Labarthet, Sensors 13(10), 12744-12759 (2013).
âTip-enhanced Raman mapping of a single Ge nanowireâ, Ogawa Y, Yuasa Y, Minami F, Oda S, Appl Phys Lett. 99, 053112 (2011).
âProbing local strain and composition in Ge nanowires by means of tip-enhanced Raman scatteringâ, J. S. Reparaz, N. Peica, R. Kirste, A. R. Goni, M. R. Wagner, G. Callsen, M. I. Alonso, M. Garriga, I. C. Marcus, A. Ronda, I. Berbezier, J. Maultzsch, C. Thomsen and A. Hoffmann, Nanotechnology 24, 185704 (2013).
âImaging of single GaN nanowires by tip-enhanced Raman spectroscopyâ, N. Marquestaut, D. Talaga, L. Servant, P. Yang, P. Pauzauskie and F. Lagugne-Labarthet, Journal of Raman Spectroscopy 40, 1441â1445 (2009).
â Electronic Field effect in atomically thin carbon filmsâ, K. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieve and A. A. Firsov Science 306, 666-669 (2004).
âTwo-dimentional gas of massless Dirac fermions in grapheneâ, K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature, 438, 197 (2005).
âDielectric function, screening, and plasmons in twodimensionalâ, E. H. Hwang, and S. D. Sarma, Phys. Rev. B. 75, 205418 (2007).
âIntroduction to Graphene-Based Nanomaterials: From Electronic Structure to Quantum Transportâ, L. E. F. F. Torres, S. Roche, and J-C. Charier, First Edition (Cambridge University Press, 2014)
âNanoscale Reduction of Graphene Oxide under Ambient Conditionsâ, A. C. Faucett and J. M. Mativetsky, Carbon 96, 1069-75 (2015).
âVisualizing graphene edges using tip-enhanced Raman spectroscopyâ, W. Su and D. Roy, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 31(4), 041808 (2013).
âTip-enhanced Raman spectroscopy of graphene-like and graphitic platelets on ultraflat gold nanoplatesâ, F. Pashaee, F. Sharifi, G. Fanchini and F. Lagugne-Labarthet, Phys. Chem. Chem. Phys. 17(33), 21315-22 (2015).
âTip-enhanced Raman spectroscopic measurement of stress change in local domain of epitaxial graphene on the carbon face of 4H-SiC(000-1)â, T. Suzuki, T. Itoh, S. Vantasin, S. Minami, Y. Kutsuma, K. Ashida, T. Kaneko, Y. Morisawa, T. Miura, and Y. Ozaki, Phys. Chem. Chem. Phys. 16, 20236 (2014).
âEffect of gap modes on graphene and multilayer graphene in tip-enhanced Raman spectroscopyâ, E. Poliani, F. Nippert and J. Maultzsch, Physica Status Solidi (b) 249, 2511-2514 (2012).
âProbing individual point defects in graphene via nearfield Raman scatteringâ, S. Mignuzzi, N. Kumar, B. Brennan, I. S. Gilmore, D. Richards, A. J. Pollard and D. Roy, Nanoscale 7(46), 19413-8 (2015).
âNanoscale chemical imaging of single-layer grapheneâ, J. Stadler, T. Schmid, R. Zenobi, ACS Nano. 5, 8442-8 (2011).
âEstimating Youngâs modulus of graphene with Raman scattering enhanced by micrometer tipâ, S. W. Weng, W. H. Lin, W. B. Su, E. T. Hwu, P. Chen, T. R. Tsai and C. S. Chang. Nanotechnology 25, 255703 (2014).
âTransforming bilayer MoS2 into single-layer with strong photoluminescence using UV-ozone oxidationâ, W. Su, N. Kumar, S. J. Spencer, N. Dai and D. Roy, Nano Research 8(12), 3878-86 (2015)
âQuantum limit in subnanometre-gap tip-enhanced nanoimaging of few-layer MoS2â, Y. Zhang, D. V. Voronine, S. Qiu, A. M. Sinyukov, M. Hamilton, A. V. Sokolov, Z. Zhang and M. O. Scully, arXiv:1512.07333 (2015).
âTip-Enhanced Raman Scattering of MoS2â, Dmitri V. Voronine, Gaotian Lu, Daoquan Zhu, Andrey Krayev, IEEE Journal of Selected Topics in Quantum Electronics, 1077-260X DOI: 0.1109/JSTQE.2016.2584784 (2016).
âNanoscale Mapping of Excitonic Processes in Singlelayer MoS2 using Tip-enhanced Photoluminescence Microscopy â W. Su, N. Kumar, S. Mignuzzi, J. Crain, D. Roy, Nanoscale, in press (2016).
âImproving resolution in quantum subnanometre-gap tip-enhanced Raman nanoimagingâ, Y. Zhang, D. V. Voronine, S. Qiu, A. M. Sinyukov, M. Hamilton, Z. Liege, A. V. Sokolov, Z. Zhang and M. O. Scully, Scientific Reports 6, 25788 (2016).
âHybrid tip-enhanced nano-spectroscopy and âimaging of monolayer WSe2 with local strain controlâ, K. D. Park, O. Khatib, V. Kravtsov, G. Clark, X. Xu, and M. B. Raschke, Nano. Lett. 13(8), 3626-30 (2016).
âVibrational modes of aminothiophenol: a TERS and DFT studyâ, A. Merlen, M. Chaigneau and S. Coussan, Physical Chemistry Chemical Physics 17, 19134-38 (2015).
âThe chemical origin of enhanced signals from tip-enhanced Raman detection of functionalized nanoparticlesâ, H. Wang and Z. D. Schultz, Analyst 138, 3150- 3157 (2013).
âExchange of Methyl- and Azobenzene-Terminated Alkanethiols on Polycrystalline Gold Studied by Tip-Enhanced Raman Mappingâ, G. Picardi, A. Krolikowska, R. Yasukuni, M. Chaigneau, M. Escude, V. Mourier, C. Licitra and R. Ossikovski, Chem. Phys. Chem. 15, 276â282 (2014).
âMolecular Arrangement in Self-Assembled Azobenzene-Containing Thiol Monolayers at the Individual Domain Level Studied through Polarized Near-Field Raman Spectroscopyâ, M. Chaigneau, G. Picardi and R. Ossikovski, Int. J. Mol. Sci. 12(2), 1245-1258 (2011).
âSERS and gap-mode TERS investigations of phthalocyanine molecules on nanostructured gold substratesâ E. Sheremet, R. D. Rodriguez, D. R. T. Zahn, A. G. Milekhin, E. E. Rodyakina and A. V. Latyshev, J. Vac. Sci. Technol. B. 32, 04E110 (2014).
âTip-Enhanced Raman Spectroscopy of Self-Assembled Thiolated Monolayers on Flat Gold Nanoplates Using Gaussian-Transverse and Radially Polarized Excitationsâ Farshid Pashaee , Renjie Hou , Pierangelo Gobbo , Mark S. Workentin , and Francois Lagugne-Labarthet, J. Phys. Chem. C. 117 (30), 15639â15646 (2013).
âTip-enhanced Raman spectroscopy from diazobenzenethiols on Au(111)â, G. Picardi, M. Chaigneau, A. Frigout, R. Ossikovski, C. Licitra, G. Delapierre, J. Raman. Spectrosc. 40, 1407 (2009).
âTip enhanced Raman spectroscopy imaging of opaque samples in organic liquidâ, T. Touzalin , A. L. Dauphin , S. Joiret , I. T. Lucas and E. Maisonhaute, Phys. Chem. Chem. Phys. 18, 15510-13 (2016).
âMolecular Bending at the Nanoscale Evidenced by Tip- Enhanced Raman Spectroscopy In Tunneling Mode on Thiol Self-Assembled Monolayersâ, C. Toccafondi, G. Picardi, and R. Ossikovski J. Phys. Chem. C. (2016) Just Accepted Manuscript DOI: 10.1021/acs.jpcc.6b03443
âConfocal and near-field spectroscopic investigation of P3HT:PCBM organic blend film upon thermal annealingâ, X. Wang, D. Zhang, K. Braun, H. J. Egelhaaf, A. J. Meixner, Plasmonics: Nanoimaging, Nanofabrication, and Their Applications V. 7395, 8 (2009).
âParabolic mirror-assisted tip-enhanced spectroscopic imaging for non-transparent materialsâ, D. Zhang, X. Wang, K. Braun, H. J. Egelhaaf, M. Fleischer, L. Hennemann, H. Hintz, C. Stanciu, C. J. Brabec, D. P. Kern and A. J. Meixner, J. Raman. Spectrosc. 40, 1371â6 (2009).
âNanoscale probing of a polymer-blend thin film with Tip-enhanced Raman spectroscopyâ B. S. Yeo, E. Amstad, T. Schmid, J. Stadler, R. Zenobi, Small 5, 952â60 (2009).
âHigh-resolution chemical identification of polymer blend thin films using Tip-enhanced Raman mappingâ, L. Xue, W. Li, G. G. Hoffmann, J. G. P. Goossens, J. Loos, G. de With, Macromolecules. 44, 2852â8 (2011).
âNanoscale mapping of catalytic activity using tip-enhanced Raman spectroscopyâ N. Kumar, B. Stephanidis, R. Zenobi, A. J. Wain and D. Roy, Nanoscale 7, 7133-7137 (2015).
âCatalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopyâ, E. M. V. S. Lantman, T. Deckert-Gaudig, A. J. G. Mank, V. Deckert, B. M. Weckhuysen, Nat Nanotechnol. 7, 583â6 (2012).
âPlasmon-enhanced UV photocatalysisâ, M. Honda, Y. Kumamoto, A. Taguchi, Y. Saito and S. Kawata, Appl. Phys. Lett. 104, 061108 (2014).
âNanoscale characterization of strained silicon by tipenhanced Raman spectroscope in reflection modeâ, Y. Saito, M. Motohashi, N. Hayazawa, M. Iyoki and S.Kawata, Appl Phys Lett. 88, 143109 (2006).
âVisualization of localized strain of a crystalline thin layer at the nanoscale by tip-enhanced Raman spectroscopy and microscopyâ, N. Hayazawa, M. Motohashi, Y. Saito, H. Ishitobi, A. Ono, T. Ichimura, P. Verma and S. Kawata, J. Raman. Spectrosc. 38, 684â96 (2007).
âContrast enhancement on crystalline silicon in polarized reflection mode tip-enhanced Raman spectroscopyâ, Q. Nguyen, R. Ossikovski and J. Schreiber, Opt Comm. 274, 231â5 (2007).
âSimple model for the polarization effects in tip-enhanced Raman spectroscopyâ, R. Ossikovski, Q. Nguyen and G. Picardi, Phys. Rev. B. 75, 045412 (200).
âLight depolarization induced by metallic tips in apertureless near-field optical microscopy and tip-enhanced Raman spectroscopyâ, P. G. Gucciardi, M. Lopes, R. Deturche, C. Julien, D. Barchiesi, M. L. de la Chapelle, Nanotechnology. 19, 215702 (2008).
âStress imaging of semiconductor surface by tip-enhanced Raman spectroscopyâ, Y. Saito, M. Motohashi, N. Hayazawa and S. Kawata, J Microsc Oxford. 229, 217-22 (2008).
âStrain distribution analysis of sputter-formed strained Si by Tip-enhanced Raman spectroscopyâ H. Hanafusa, N. Hirose, A. Kasamatsu, T. Mimura, T. Matsui, H. M. H. Chong, H. Mizuta and Y. Suda, Appl. Phys. Express. 4, 025701 (2011).
âHydrostatic strain enhancement in laterally confined SiGe nanostripesâ G. M. Vanacore, M. Chaigneau, N. Barrett, M. Bollani, F. Boioli, M. Salvalaglio, F. Montalenti, N. Manini, L. Caramella, P. Biagioni, D. Chrastina, . Isella, O. Renault, M. Zani, R. Sordan, G. Onida, R Ossikovski, H.-J. Drouhin, and A. Tagliaferri, Phys. Rev. B. 88, 115309 (2013).
â20-nm-Resolved Stress Profile in SiGe Nano-stripes Obtained by Tip-Enhanced Raman Spectroscopyâ, M. Chaigneau, G. M. Vanacore, M. Bollani, G. Picardi, A. Tagliaferri and R. Ossikovski, Handobook of Enhanced Spectroscopy, Chapter 13, (Pan Stanford Publishing 2014)
âNanoanalysis of crystalline properties of GaN thin film using tip-enhanced Raman spectroscopyâ, R. Matsui, P. Verma, T. Ichimura, Y. Inouye, S. Kawata, Appl. Phys. Lett. 90, 061906 (2007).
âNanoscale imaging of InN segregation and polymorphism in single vertically aligned InGaN/GaN multi quantum well nanorods by Tip-enhanced Raman scatteringâ E. Poliani, M. R. Wagner, J. S. Reparaz, M. Mand, M. Strassburg, X. Kong, A. Trampert, C. M. S. Torres, A.Hoffmann and J. Maultzsch, Nano Lett. 13, 3205â12 (2013).
âDifferent longitudinal optical-transverse optical mode amplification in tip enhanced Raman spectroscopy of GaAs (001)â, P. G. Gucciardi and J. C. Valmalette, Appl. Phys. Lett. 97, 263104:1â263104:3 (2010).
âSurface- and tip-enhanced resonant Raman scattering from CdSe nanocrystalsâ E. Sheremet, A. G. Milekhin, R. D. Rodriguez, T. Weiss, M. Nesterov, E. E. Rodyakina, O. D. Gordan, L. L. Sveshnikova, T. A. Duda, V. A. Gridchin, V. M. Dzhagan, M. Hietschold and D. R. T. Zahn, Phys. Chem. Chem. Phys. 17(33), 21198-203 (2015).
"Tip-Enhanced Raman Scattering â Targeting Structure- Specific Surface Characterization for Biomedical Samples". G. Sharma et al. Adv. Drug Deliv. Rev. 89, 42-56, (2015)
âTip Enhanced Raman Spectra of Picomole Quantities of DNA Nucleobases at Au (111)â, K. F. Domke, D. Zhang and B. Pettinger, J. Am. Chem. Soc. 129(21), 6708-09 (2007).
âTip-Enhanced Raman Spectroscopy of Combed Double-Stranded DNA Bundlesâ, S. Najjar, D. Talaga, L. Schue,Y. Coffinier, S. Szunerits, R. Boukherroub, L. Servant, V. Rodriguez, and S. Bonhommeau, J. Phys. Chem. C 118, 1174â1181 (2014).
âDistinction of nucleobases â a tip-enhanced Raman approachâ R. Treffer, X. Lin, E. Bailo, T. Deckert- Gaudig and V. Deckert, Beilstein J. Nanotechnol. 2,628â637 (2011).
âAromatic Amino Acid Monolayers Sandwiched between Gold and Silver : A Combined Tip-Enhanced Raman and Theoretical Approachâ, T. Deckert- Gauding, E. Rauls and V. Deckert, J. Phys. Chem. C.114(16), 7412-20 (2010).
âTip-Enhanced Raman Scattering (TERS) of Oxidised Glutathione on an Ultraflat Gold Nanoplateâ T. Deckert-Gaudig, E. Bailo, V. Deckert, Phys. Chem. Chem. Phys. 11(34): 7360â7362 (2009).
âMultimodal Spectroscopic Study of Amyloid Fibril Polymorphismâ C. C. VandenAkker, M. Schleeger, A. L. Bruinen, T. Deckert-Gaudig, K. P. Velikov, R. M. A. Heeren, V. Deckert, M. Bonn, and G. H. Koenderink, J. Phys. Chem. B 120, 8809â8817 (2016).
"Tip-Enhanced Raman Spectra of Picomole Quantities of DNA Nucleobases at Au(111)" K. Domke et al. . J. Am. Chem. Soc. 129, 6708-6709, (2007).
"Tip-Enhanced Raman Spectroscopy of Single RNA Strands: Towards a Novel Direct-Sequencing Method". E. Bailo and V. Deckert. Angew. Chem. Int. Ed. 47, 1658 â1661, (2008).
"Distinction of Nucleobases â A Tip-Enhanced Raman Approach". R. Treffer et al., Beilstein J. Nanotechnol. 2, 628â637, (2011).
"Tip-Enhanced Raman Spectroscopy of Combed Double-Stranded DNA Bundles". S. Najjar et al. J. Phys. Chem. C 118, 1174â1181 (2014).
Tip-enhanced Raman spectroscopy: Focusing in on a Direct Sequencing Method for Oxidized DNA, in: Biomedical Optics, Miami, FL: Optical Society of America.N. J. Kolodziejski et al. (2014).
"Ultraflat Transparent Gold Nanoplates â Ideal Substrates for Tip-Enhanced Raman Scattering Experiments". T. Deckert-Gaudig and V. Deckert.Small 5,432-436, (2009).
"Tip-Enhanced Raman Scattering Studies of Histidine on Novel Silver Substrates". T. Deckert-Gaudig and V. Deckert. J. Raman Spectrosc. 40 (2009), 1446â1451.
"Tip-Enhanced Raman Spectroscopy Can See More: The Case of Cytochrome C". B-S. Yeo et al. J. Phys. Chem. C 112), 4867-4873 (2008).
âStructure and Composition of Insulin Fibril Surfaces Probed by TERSâ, D. Kurouski, T. Deckert-Gauding, V. Deckert and I. K. Lednev, J. Am. Chem. Soc. 134(32), 13323-29 (2012).
"Surface Characterization of Insulin Protofilaments and Fibril Polymorphs Using Tip-Enhanced Raman Spectroscopy (TERS)", D. Kurouski et al., Biophys. J. 106, 263â271, (2014).
"Raman to the Limit: Tip-Enhanced Raman Spectroscopic Investigations of a Single Tobacco Mosaic Virus", D. Cialla et al.,J. Raman Spectrosc. 40 (2009), 240â243.
"A Manual and an Automatic TERS Based Virus Discrimination", K. Olschewski et al. Nanoscale, 7 (2015), 4545-4552 (2015).
"On the Way to Nanometer-Sized Information of the Bacterial Surface by Tip-Enhanced Raman Spectroscopy", U. Neugebauer et al., Chem. Phys. Chem. 7,1428 â 1430, (2006).
Towards a Specific Characterization of Components on a Cell Surface â Combined TERS Investigations of Lipids and Human Cells. R. Bohme et al., J. Raman Spectrosc. 40, 1452â1457, (2009).
"Tip-Enhanced Raman Detection of Antibody Conjugated Nanoparticles on Cellular Membranes", K. D. Alexander and Z. D. Schultz. Anal. Chem. 84, 7408â7414, (2012).
Tip-Enhanced Raman Spectroscopy â Its Status, Challenges and Future Directions, B-S. Yeo et al., Chem.Phys. Lett. 472, 1-13 (2009).