Dernières publications
Discover how TERS surface information helps understanding the impact ignition mechanism of explosive nanoparticles. In this recent study, researchers from the French German Institute of St Louis and the Leibniz Institute of Photonic Technologyreports on how TERS mode with ֱ AFM-Raman reveals the crucial surface structure of these nanoscale co-crystals of two organic explosive compounds with opposite properties.
Gold-mediated exfoliation of MoS2 produces large area (cm size) high-quality crystals that are so much wanted for building nanodevices. 2010 Physics Nobel Prize Pr S. Novoselov from the University of Manchester and numerous collaborators from UK, CZ & US (including ֱ) published a beautiful study about the quality of interaction between MoS2 and gold using Raman and XPS. Thanks to TERS mapping with ֱ AFM-Raman system, they could relate nanoscale variations in specific vibrational and binding energy fingerprints to local substantial strain and charge doping in monolayer MoS2. These results pave the way for strain and charge doping nanoengineering of MoS2.
Sequencing of RNA by direct imaging would be a breakthrough not only in understanding and treating human diseases but also in elucidating phenomena involving living systems. In this short communication, Pr M.O. Scully from Texas A&M University et al bring the proof of concept of identifying the sequence of individual nucleobases of a single strand RNA deposited on a gold surface using ֱ AFM-TERS nanoimaging with an accuracy of 90%. To extract ID information from the low signal and high multiple peaks spectra the authors have developed a sophisticated analytical method based on a correlation function which estimates similarity with reference data.
Using Tip-Enhanced Photoluminescence (TEPL), Researchers from Columbia Engineering are first to demonstrate that sufficient strain in 2D material can yield single-photon emitters, key to quantum technologies and future photonic circuitry. The team was able to directly image these localized states for the first time, revealing that even at room temperature they are highly tunable and act as quantum emitters. TEPL has been performed with the AFM-Raman system from ֱ and the amazing results has been published recently in Nature Nanotechnology.
Remarkable demonstration of TERS as a powerful characterization tool for plasmonic nanostructures enabling a spatial visualization of the plasmonic resonances. Prof. P. El-Khoury from Pacific Northwest National Laboratory reports in a recent article TERS images of gold nanorods of varying lengths coated with 4-thiobenzonitrile: the spatial resolution achieved with TERS and its spatio-spectral capability allow the simultaneous observation of the quadripolar mode at low frequency shift of the molecule and tripolar mode at high frequency shift on a rod of a 240 nm length.
Matching Raman excitation laser, band gap of analyzed material and localized surface plasmon of substrate structure to reach ultimate TERS enhancement. That’s what I.A. Milekhin from the Technische Universität Chemnitz et al have achieved on monolayers CdSe nanocrystals deposited on gold nanodisks. Read it in a recent study published in Nanoscale Advances: Nanometer resolution TERS mapping with ֱ AFM-Raman system reveals that the CdSe phonon resonant response is strongly correlated with the local electromagnetic field distribution over the plasmonic structures (gold nanodisks and commercial SERS substrate (inverted pyramids covered by gold nanoclusters)).
Really promising! A rapid method to detect viral contamination of surfaces! Hurry and read this article from the team of Pr Dmitry Kurouski from Texas A&M University published in ACS Analytical Chemistry. Their approach is to combine two complementary label-free, non-invasive and non-destructive imaging techniques, AFM-IR and TERS. While AFM-IR gives information about both inner and outer parts of individuals virions of MS2 and HSV-1, TERS reveals the protein secondary structure and amino acid composition of the virus surfaces.
“” Thomas P. Darlington, Christian Carmesin, Matthias Florian, Emanuil Yanev, Obafunso Ajayi, Jenny Ardelean, Daniel A. Rhodes, Augusto Ghiotto, Andrey Krayev, Kenji Watanabe, Takashi Taniguchi, Jeffrey W. Kysar, Abhay N. Pasupathy, James C. Hone, Frank Jahnke, Nicholas J. Borys & P. James Schuck Nature Nanotechnology 15, 854–86 (2020)
“” Sreetosh Goswami, Debalina Deb, Agnès Tempez, Marc Chaigneau, Santi Prasad Rath, Manohar Lal, Ariando, R. Stanley Williams, Sreebrata Goswami, Thirumalai Venkatesan Advanced Materials 32, 42, 2004370 (2020)
“” David Moore, Kiyoung Jo, Christine Nguyen, Jun Lou, Christopher Muratore, Deep Jariwala & Nicholas R. Glavin npj 2D Mater Appl 4, 44 (2020)
“” Tim Verhagen, Alvaro Rodriguez, Martin Vondráček, Jan Honolka, Sebastian Funke, Magda Zlámalová, Ladislav Kavan, Martin Kalbac, Jana Vejpravova, and Otakar Frank ACS Appl. Nano Mater, 3, 7, 6563–6573 (2020)
“” Matěj Velický, Alvaro Rodriguez, Milan Bouša, Andrey V. Krayev, Martin Vondráček, Jan Honolka, Mahdi Ahmadi, Gavin E. Donnelly, Fumin Huang, Héctor D. Abruña, Kostya S. Novoselov, and Otakar Frank J. Phys. Chem. Lett., 11, 15, 6112–6118 (2020)
“” Alvaro Rodriguez, Martin Kalbac, Otakar Frank arXiv:2010.06326 (2020)
“” Mahfujur Rahaman, Oleksandr Selyshchev, Yang Pan, Ilya Milekhin, Apoorva Sharma, Georgeta Salvan, Sibylle Gemming, Dietrich R T Zahn arXiv:2006.04979 (2020)
“” Milekhin, M. Rahaman, K. V. Anikin, E. E. Rodyakina, T. A. Duda, B. M. Saidzhonov, R. B. Vasiliev, V. M. Dzhagan, A. G. Milekhin, A. V. Latyshev and D. R. T. Zahn Nanoscale Adv., 2020, 2, 5441-5449
“” Zachary H Withers, Sharad Ambardar, Xiaoyi Lai, Jiru Liu, Alina Zhukova, Dmitri V Voronine arXiv:2001.10138 (2020)
“” Chawki Awada Chahinez Dab Jiawei Zhang Andreas Ruediger Journal of Raman Spectroscopy 51, 8, 1270-1277 (2020)
“” Azza Hadj Youssef, Jiawei Zhang, Andreas Dörfler, Gitanjali Kolhatkar, Alexandre Merlen, and Andreas Ruediger Optics Express 28, 9, 14161-14168 (2020)
“” Jiawei Zhang, Azza Hadj Youssef, Andreas Dörfler, Gitanjali Kolhatkar, Alexandre Merlen, and Andreas Ruediger Optics Express 28, 18, 25998-26006 (2020)
“” Ashish Bhattarai, Zhihua Cheng, Alan G. Joly, Irina V. Novikova, James E. Evans, Zachary D. Schultz, Matthew R. Jones, and Patrick Z. El-Khoury J. Phys. Chem. Lett. 11, 5, 1795–1801 (2020)
“” Chih-Feng Wang, Brian T. O’Callahan, Dmitry Kurouski, Andrey Krayev, Zachary D. Schultz, and Patrick Z. El-Khoury J. Phys. Chem. Lett. 2020, 11, 15,&Բ;5890–5895
“” Rui Wang, Jingbai Li, Joel Rigor, Nicolas Large, Patrick Z. El-Khoury, Andrey Yu. Rogachev, and Dmitry Kurouski J. Phys. Chem. C 124, 3, 2238–2244 (2020)
“” Ashish Bhattarai, Kevin T. Crampton, Alan G. Joly, Chih-Feng Wang, Zachary D. Schultz, and Patrick Z. El-Khoury J. Phys. Chem. Lett 11, 5, 1915–1920 (2020)
“” Yi Yao, Fei Chen, Li Fu, Su Ding, Shichao Zhao, Qi Zhang, Weitao Su*, Xin Ding, and Kaixin Song J. Phys. Chem. C 124, 13, 7591–7596 (2020)
“” Chih-Feng Wang, Zhihua Cheng, Brian T. O’Callahan, Kevin T. Crampton, Matthew R. Jones, and Patrick Z. El-Khoury J. Phys. Chem. Lett. 11, 7, 2464–2469 (2020)
“” Ashish Bhattarai, Brian T. O’Callahan, Chih-Feng Wang, ShanYi Wang, and Patrick Z. El-Khoury J. Phys. Chem. Lett. 11, 8, 2870–2874 (2020)
“” Andrey Krayev, Sergiy Krylyuk, Robert Ilic, Angela R. Hight Walker, Ashish Bhattarai, Alan G. Joly, Matěj Velický, Albert V. Davydov, and Patrick Z. El-Khoury J. Phys. Chem. C 124, 16, 8971–8977 (2020)
“” Tianyi Dou, Zhandong Li, Junjie Zhang, Alex Evilevitch, and Dmitry Kurouski Anal. Chem. 92, 16, 11297–11304 (2020)
“” Rui Wang, Zhe He, Alexei V. Sokolov, and Dmitry Kurouski J. Phys. Chem. Lett. 11, 10, 3815–3820 (2020)
“” Chih-Feng Wang, Brian T. O’Callahan, Dmitry Kurouski, Andrey Krayev, and Patrick Z. El-Khoury J. Phys. Chem. Lett. 11, 10, 3809–3814 (2020)
“” Zhandong Li and Dmitry Kurouski J. Phys. Chem. C 124, 23, 12850–12854 (2020)
“” Brian T. O’Callahan, Ashish Bhattarai, Zachary D. Schultz, and Patrick Z. El-Khoury J. Phys. Chem. C, 124, 28, 15454–15459 (2020)
“” Zhandong Li, Rui Wang, and Dmitry Kurouski J. Phys. Chem. Lett. 11, 14, 5531–5537 (2020)
“” Patrick Z. El-Khoury* and Edoardo Aprà J. Phys. Chem. C 124, 31, 17211–17217 (2020)
“” Zhandong Li, Patrick Z. El-Khoury and Dmitry Kurouski Chem. Commun., 2021,57, 891-894
“” Yang G, Li X, Cheng Y, Wang M, Ma D, Sokolov A, Kalinin S, Veith G, Nanda J Research Square; 2020. DOI: 10.21203/rs.3.rs-38466/v1.
“” Zhe He, Weiwei Qiu, Megan E. Kizer, Jizhou Wang, Wencong Chen, Alexei V. Sokolov, Xing Wang, Jonathan Hu, and Marlan O. Scully ACS Photonics, (2020)
“” Jakob Hübner, Tanja Deckert-Gaudig, Julien Glorian, Volker Deckert and Denis Spitzer Nanoscale, 2020,12, 10306-10319 (2020)
“” Jakob Hübner, Vincent Pichot, Emeline Lobry, Tanja Deckert-Gaudig, Volker Deckert, Denis Spitze researchgate.net (2020)
“” Thomas P. Darlington, Andrey Krayev, Vishal Venkatesh, Ravindra Saxena, Jeffrey W. Kysar, Nicholas J. Borys, Deep Jariwala, and P. James Schuck J. Chem. Phys. 153, 024702 (2020)
“” Elizabeth J. Legge, Keith R. Paton, Magdalena Wywijas, Greg McMahon, Rory Pemberton, Naresh Kumar, Arun Prakash Aranga Raju, Craig P. Dawson, Andrew J. Strudwick, James W. Bradley, Vlad Stolojan, S. Ravi P. Silva, Stephen A. Hodge, Barry Brennan, and Andrew J. Pollard ACS Appl. Mater. Interfaces 12, 11, 13481–13493 (2020)
“” Naresh Kumar, Sofia Marchesini, Thomas Howe, Lee Edwards, Barry Brennan and Andrew J. Pollard J. Chem. Phys. 153, 184708 (2020)
“” C. Focsa, D. Duca, J. A. Noble, M. Vojkovic, Y. Carpentier, C. Pirim, C. Betrancourt, P.Desgroux, T. Tritscher, J. Spielvogel, M. Rahman, A. Boies, K. F. Lee; A. N. Bhave; S. Legendre, O. Lancry, P. Kreutziger, M. Rieker Atmospheric Environment 235, 117642 (2020)
“” Usant Kajendirarajah, María Olivia Avilés and François Lagugné-Labarthet Phys. Chem. Chem. Phys. 22, 17857-17866 (2020)
“” Dr. Xiao You, Clayton B. Casper, Emily E. Lentz, Prof. Dorothy A. Erie, Prof. Joanna M. Atkin ChemPhysChem 21, 188 – 193 (2020)
“” Volker Deckert, Tanja Deckert-Gaudig, Dana Cialla-May, Jürgen Popp,Roland Zell, Stefanie Deinhard-Emmer, Alexei V. Sokolov, Zhenhuan Yi, and Marlan O. Scully PNAS 117 (45), 27820-27824 (2020)
“” Naresh Kumar, Bert M. Weckhuysen, Andrew J. Wain & Andrew J. Pollard, Nature Protocols 14, 1169–1193 (2019)
“” Zhe He, Zehua Han, Megan Kizer, Robert J. Linhardt, Xing Wang, Alexander M. Sinyukov, Jizhou Wang, Volker Deckert, Alexei V. Sokolov, Jonathan Hu, Marlan O. Scully, J. Am. Chem. Soc. 141, 2, 753-757 (2019)
“” Ashish Bhattarai, Alan G. Joly, Andrey Krayev, Patrick Z. El-Khoury, J. Phys. Chem. C 123, 7376 (2019)
“” Qiushi Liu, Sanggon Kim, Xuezhi Ma, Ning Yu, Yangzhi Zhu, Siyu Deng, Ruoxue Yan, Huijuan Zhaod and Ming Liu, Nanoscale 11, 7790-7797 (2019)
“” Prasana K. Sahoo, Haonan Zong, Jiru Liu, Wenjin Xue, Xiaoyi Lai, Humberto R. Gutiérrez, and Dmitri V. Voronine, Opt. Mater. Express 9, 1620 (2019)
“” Naresh Kumar, Caterina S. Wondergem, Andrew J. Wain, Bert M. Weckhuysen, J. Phys. Chem. Lett. 10, 1669–1675 (2019)
“” Xuezhi Ma, Yangzhi Zhu, Ning Yu, Sanggon Kim, Qiushi Liu, Leonard Apontti, Da Xu, Ruoxue Yan, Ming Liu, Nano Lett. 19(1), 100 (2019)
“” Mahfujur Rahaman, Alexander G. Milekhin, Ashutosh Mukherjee, Ekaterina E. Rodyakina, Alexander V. Latyshev, Volodymyr M. Dzhagan and Dietrich R. T. Zahn, Faraday Discuss., Advance Article (2019)
“” Naresh Kumar, Sam Kalirai, Andrew J. Wain, Bert M. Weckhuysen, ChemCatChem 11, 417–423 (2019)
“” Weitao Su, Naresh Kumar, Andrey Krayev and Marc Chaigneau, Nature Communications 9, 2891 (2018)
“” Chenwei Tang, Zhe He, Weibing Chen, Shuai Jia, Jun Lou, and Dmitri V. Voronine, Phys. Rev. B 98, 041402(R) (2018)
“” Rui Wang and Dmitry Kurouski, J. Phys. Chem. C 122 (42), 24334 (2018)
“” Cristiano D'Andrea, Antonino Foti, Maximilien Cottat, Martina Banchelli, Claudia Capitini, Francesco Barreca, Claudio Canale, Marella de Angelis, Annalisa Relini, Onofrio M. Maragò, Roberto Pini, Fabrizio Chiti, Pietro G. Gucciardi, Paolo Matteini, Small 14, 1800890 (2018)
“” Mischa Nicklaus, Gitanjali Kolhatkar, Julien Plathier, Chahinez Dab, Andreas Ruediger, Adv. Funct. Mater. 29, 1806770 (2018)
“” Hiroki Itasaka, Ken-ichi Mimura, Masayuki Nishi, and Kazumi Kato, Appl. Phys. Lett. 112, 212901 (2018)
“” Raul D. Rodriguez, Teresa I. Madeira, Evgeniya Sheremet, Eugene Bortchagovsky, Ashutosh Mukherjee, Michael Hietschold, Dietrich R. T. Zahn, ACS Photonics 5 (8), 3338 (2018)
“” Zhongjian Zhang, Alex C. De Palma, Christopher J. Brennan, Gabriel Cossio, Rudresh Ghosh, Sanjay K. Banerjee, and Edward T. Yu, Phys. Rev. B 97, 085305 (2018)
“” Alexander G. Milekhin, Mahfujur Rahaman, Ekaterina E. Rodyakina, Alexander V. Latyshev, Volodymyr M. Dzhaga and Dietrich R. T. Zahn, Nanoscale 10, 2755 (2018)
“” Naresh Kumar, Weitao Su, Martin Veselý, Bert M. Weckhuysen, Andrew J. Pollard and Andrew J. Wain, Nanoscale 10, 1815 (2018)
“” Siyu He, Hongyuan Li, Carmen L. Gomes, Dmitri V. Voronine, Biointerphases 13, 03C402 (2018)
“” T. Xu, A. Díaz Álvarez, W. Wei, D. Eschimese, S. Eliet, O. Lancry, E. Galopin, F. Vaurette, M. Berthe, D. Desremes, B. Wei, J. Xu, J. F. Lampin, E. Pallecchi, H. Happy, D. Vignaud and B. Grandidier, Nanoscale 10, 7519 (2018)
“” Deep Jariwala, Andrey Krayev, Joeson Wong, A Edward Robinson, Michelle C Sherrott, Shuo Wang, Gang-Yu Liu, Mauricio Terrones and Harry A Atwater, 2D Mater. 5 035003 (2018)
“” Kirby K. H. Smithe, Andrey V. Krayev, Connor S. Bailey, Hye Ryoung Lee, Eilam Yalon, Özgür Burak Aslan, Miguel Muñoz Rojo, Sergiy Krylyuk, Payam Taheri, Albert V. Davydov, Tony F. Heinz, Eric Pop, ACS Appl. Nano Mater. 1 (2), 572 (2018)
“” Ashish Bhattarai, Andrey Krayev, Alexey Temiryazev, Dmitry Evplov, Kevin T. Crampton, Wayne P. Hess, Patrick Z. El-Khoury, Nano Lett.18 (6), 4029 (2018)
“” Yoshito Okuno, Ophélie Lancry, Agnès Tempez, Cristina Cairone, Matteo Bosi, Filippo Fabbri and Marc Chaigneau, Nanoscale 10, 14055 (2018)
“” Sébastien Bonhommeau, Sophie Lecomte, ChemPhysChem 19, 8-18 (2018)
“” Antonino Foti1, Francesco Barreca, Enza Fazio, Cristiano D’Andrea, Paolo Matteini, Onofrio Maria Maragò and Pietro Giuseppe Gucciardi, Beilstein J. Nanotechnol. 9, 2718–2729 (2018)
“” Laura Borromeo, Chiara Toccafondi, Mona Wetrhus Minde, Udo Zimmermann, Sergio Andò, Merete Vadla Madland, Reidar Inge Korsnes, and Razvigor Ossikovski, Journal of Applied Physics 124, 173101 (2018)
“” David Talaga, Willy Smeralda, Laurie Lescos, Julien Hunel, Nad'a Lepejova‐Caudy, Christophe Cullin, Sébastien Bonhommeau, Sophie Lecomte, Angewandte Chemie 130, 15964-15968 (2018)
“” Dmitri V. Voronine, Zhenrong Zhang, Alexei V. Sokolov, Marlan O. Scully, Nanophotonics 7(3), 523–548 (2018)
“” Mahfujur Rahaman, Raul D. Rodriguez, Gerd Plechinger, Stefan Moras, Christian Schüller, Tobias Korn, Dietrich R. T. Zahn, Nano Lett.17 (10), 6027 (2017)
“” A. Bhattarai and P. Z. El-Khoury, Chem. Commun. 53, 7310-7313 (2017)
“” Thomas Touzalin, Suzanne Joiret, Emmanuel Maisonhaute, and Ivan T. Lucas, Anal. Chem. 89 (17), 8974–8980 (2017)
“” Julien Plathier, Andrey Krayev, Vasili Gavrilyuk, Alain Pignolet and Andreas Ruediger, Nanoscale Horiz., 2017, DOI: 10.1039/C7NH00075H
“” George P. Zograf, Mihail I. Petrov, Dmitry A. Zuev, Pavel A. Dmitriev, Valentin A. Milichko, Sergey V. Makarov, and Pavel A. Belov, Nano Lett., 17 (5), 2945–2952 (2017)
“” Nina I. Kovtyukhova, Nestor Perea-López, Mauricio Terrones, and Thomas E. Mallouk, ACS Nano 11 (7), 6746–6754 (2017)
“” Zhesheng Chen, Johan Biscaras and Abhay Shukla, 2D Mater. 4 025115 (2017)
“” Dmitri V. Voronine, Gaotian Lu, Daoquan Zhu, Andrey Krayev, IEEE Journal of Selected Topics in Quantum Electronics DOI: 10.1109/JSTQE.2016.2584784 (2017).
“” Sergii Sergiienko, Kamila Moor, Kristina Gudun, Zarina Yelemessova, and Rostislav Bukasova, Phys Chem Chem Phys.19(6):4478-4487 (2017).
“” (111), W. –I. Lin, F. Gholami, P. Beyer, N. Severin, F. Shao, R. Zenobi, J. P. Rabe, Chem. Commun. 53, 724-727 (2017)
“” Christoph Kastl, Christopher T Chen, Tevye Kuykendall, Brian Shevitski, Thomas P Darlington, Nicholas J Borys, Andrey Krayev, P James Schuck, Shaul Aloni and Adam M Schwartzber, 2D Mater. 4 021024 (2017) .
“” Chenwei Tang, Shuai Jia, Weibing Chen, Jun Lou, Dmitri V. Voronine arXiv:1704.02396 (2017).
“” Naresh Kumar, Alina Zoladek-Lemanczyk, Anne A. Y. Guilbert, Weitao Su, Sachetan M. Tuladhar, Thomas Kirchartz, Bob C. Schroeder, Iain McCulloch, Jenny Nelson, Debdulal Roy and Fernando A. Castro, Nanoscale 9(8):2723-2731 (2017).
“” Naresh Kumar, Marek M. Drozdz, Haibo Jiang, Daniela M. Santos and David J. Vaux, Chem. Commun. 53, 2451 (2017)
“”, by Barbara Foster, American Laboratory, September 2016
“” E. Sheremet, R. D. Rodriguez, A. L. Agapov, A. P. Sokolov, M. Hietschold, D. R.T. Zahn, Carbon 96 (2016) 588-593.
“.” T. Touzalin , A. L. Dauphin , S. Joiret , I. T. Lucas and E. Maisonhaute, Phys. Chem. Chem. Phys., 2016 DOI: 10.1039/C6CP02596J
“.” Yingchao Zhang, Dmitri V. Voronine, Shangran Qiu, Alexander M. Sinyukov, Mary Hamilton, Zachary Liege, Alexei V. Sokolov, Zhenrong Zhang, Marlan O. Scully, Scientific Reports 6, 25788 (2016), DOI:10.1038/srep25788
“.” Yoshito Okuno, Sanpon Vantasin, In-Sang Yang, Jangyup Son, Jongill Hong, Yoshito Yannick Tanaka, Yasushi Nakata, Yukihiro Ozaki and Nobuyuki Naka, Appl. Phys. Lett. 108, 163110 (2016); DOI: 10.1063/1.4947559
“.” Su, Weitao, Naresh Kumar, Sandro Mignuzzi, Jason Crain, and Debdulal Roy, Nanoscale, 2016, 1–3.DOI:10.1039/C5NR07378B.
“” Sup35: AFM and Tip-Enhanced Raman Scattering studies.” Alexey V. Krasnoslobodtsev, Tanja Deckert-Gaudig, Yuliang Zhang, Volker Deckert, Yuri L. Lyubchenko, Ultramicroscopy 165, 26–33 (2016).
“.” Farshid Pashaee, Mohammadali Tabatabaei, Fabiana A. Caetano, Stephen S. G. Ferguson and François Lagugné-Labarthet, Analyst, 2016, DOI: 10.1039/C6AN00350H
“.” David P. Cowcher, Tanja Deckert-Gaudig, Victoria L. Brewster, Lorna Ashton, Volker Deckert, and Royston Goodacre, Anal. Chem., 2016, 88 (4), 2105–2112, DOI: 10.1021/acs.analchem.5b03535
“.” Naresh Kumar, Steve J. Spencer, Dario Imbraguglio, Andrea M. Rossi, Andrew J. Wain, Bert M. Weckhuysenb and Debdulal Roy, Phys. Chem. Chem. Phys., 2016, DOI: 10.1039/C6CP01641C
“” Chiara Toccafondi, Gennaro Picardi, and Razvigor Ossikovski, J. Phys. Chem. C (2016) DOI: 10.1021/acs.jpcc.6b03443
“” Aleksandr Kuchmizhak, Stanislav Gurbatov, Oleg Vitrik, Yuri Kulchin, Valentin Milichko, Sergey Makarov, and Sergey Kudryashov, Scientific Reports 6, 19410 (2016)
“” A. Kuchmizhak, O. Vitrik, Yu. Kulchin, D. Storozhenko, A. Mayor, A. Mirochnik, S. Makarov, V. Milichko, S. Kudryashov, V. Zhakhovsky and N. Inogamov, Nanoscale 8, 12352-12361 (2016)
“” Joel F. Destino, Zachary R. Jones, Caitlyn M. Gatley, Yi Zhang, Andrew K. Craft, Michael R. Detty and Frank V. Bright, Langmuir 32, 10113−10119 (2016). DOI:10.1021/acs.langmuir.6b02664
“” Vladimir A. Kolchuzhin, Evgeniya Sheremet, Kunal Bhattacharya, Raul D. Rodriguez, Soumya Deep Paul, Jan Mehner, Michael Hietschold, Dietrich R.T. Zahn, Mechatronics 40, 281-286 (2016)
“” Siyu He, Hongyuan Li, Zhe He, Dmitri V. Voronine. (2016)
“” Huashun Wen, Yuefeng Ji, and Bahram Jalali, Fellow, IEEE Photonics Journal Vol.8 Issue 5, DOI: 10.1109/JPHOT.2016.2612360 (2016)
Plateforme optique AFM
AFM autonome avancée
AFM-Raman pour l'imagerie physique et chimique
AFM-Raman pour l'imagerie physique et chimique
AFM et microscopie à lumière inversée
Nanoscopie corrélative directe en temps réel
Couplage optique AFM polyvalent
Do you have any questions or requests? Use this form to contact our specialists.